
Download free eBooks at bookboon.com

Applications of Prolog

103

Informed Search

Chapter 3

Informed Search

In this chapter we are going to discuss graph search algorithms and applications thereof for finding a minimum
cost path from a start node to the goal node.

3.1 The Network Search Problem with Costs

The network search problem in Sect. 2.2 (Fig. 2.1) was devoid of any cost information. Let us now assume that
the costs to traverse the edges of the graph in Fig. 2.1 are as indicated in Fig. 3.1.

There are two possible interpretations of the figures in Fig. 3.1: they can be thought of as costs of edge
traversal or, alternatively, as edge lengths. (We prefer the latter interpretation in which case, of course, Fig. 3.1
is not to scale.) The task is to determine a minimum length path connecting s and g, or, more generally,
minimum length paths connecting any two nodes.

The algorithms considered in this chapter assume the knowledge of an heuristic distance measure, H , between
nodes. Values of H for the network in Fig. 3.1 are shown in Table 3.1. They are taken to be the estimated
straight line distances between nodes and may be obtained by drawing the network in Fig. 3.1 to scale and
taking measurements.

Three algorithms will be introduced here: the A–Algorithm, Iterative Deepening A∗ and Iterative Deepen-
ing A∗–ε.

�
�
�
�

�
�
�
�

���

� � �
��
cba

d e f

gs

35 37

52 43

55 54

62

85

28

Figure 3.1: A Network with Costs

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

104

Informed Search

85 40 30 62 34 31 14 s
98 51 25 76 45 28 g

109 71 54 73 37 f
77 54 63 35 e
55 61 88 d
95 43 c
52 b
a

Table 3.1: Straight Line Distances between Nodes in Fig. 3.1

3.1.1 Cost Measures

An estimated overall cost measure, calculated by the heuristic evaluation function F , will be attached to every
path; it is represented as

F = G + H (3.1)

where G is the actual cost incurred thus far by travelling from the start node to the current node and H , the

http://bookboon.com/
http://bookboon.com/count/advert/7a02d4d2-9105-46a9-9453-a37800b93d7c

Download free eBooks at bookboon.com

Applications of Prolog

105

Informed Search

heuristic, is the estimated cost of getting from the current node to the goal node. Assume, for example, that
in the network shown in Fig. 3.1 we start in d and want to end up in c. Equation (3.1) then reads for the path
d → s → a (with obvious notation) as follows

F (d → s → a, c) = G(d → s → a) + H(a, c)

= (62 + 85) + 95 = 147 + 95 = 242 (3.2)

3.1.2 The A–Algorithm

We know from Chap. 2 that for blind search algorithms the updating of the agenda is crucial: Breadth First
comes about by appending the list of extended paths to the list of open paths; Depth First requires these lists
to be concatenated the other way round.

For the A–Algorithm, the updating of the agenda is equally important. The new agenda is obtained from
the old one in the steps 1© and 2© below.

1© Extend the head of the old agenda to get a list of successor paths. An intermediate, ‘working’ list will be
formed by appending the tail of the old agenda to this list.

2© The new agenda is obtained by sorting the paths in the working list from 1© in ascending order of their
F–values.

3© The steps 1© and 2© are iterated until the path at the head of the agenda leads to the goal node.

In the example shown in Fig. 3.2, the paths are prefixed by their respective F–values and postfixed by their
respective G–values. Using this notation and the cost information, the example path in (3.2) is now denoted
by 242 − [a, s, d] − 147. Notice that this path also features in Fig. 3.2.

It can be shown (e.g. [23]) that if the heuristic H is admissible, i.e. it never overestimates the actual
minimum distance travelled between two nodes, the A–Algorithm will deliver a minimum cost path if such a
path exists.1In this case the A–Algorithm is referred to as an A∗–Algorithm and is termed admissible. (As the
straight line distance is a minimum, the heuristic defined by Table 3.1 is admissible.)

Implementation

The predicate a search(+Start,+Goal,-PathFound) in asearches.pl implements the A–Algorithm. A few
salient features of a search/3 will be discussed only; for details, the reader is referred to the source code which
broadly follows the pattern of implementation of the blind search algorithms (Fig. 2.15, p. 65 and Fig. 2.20,
p. 69).

The implementation of the A–Algorithm in asearches.pl uses the built-in predicate keysort/2 to imple-
ment step 2© (see inset on p. 108).

The module invoking a search/3 should have defined (or imported) the following predicates.

• The connectivity predicate link/2 . For the network search problem, this is imported from links.pl

(Fig. 2.2, p. 49).

• The estimated cost defined by e cost/3 . For the network search problem, this is defined in graph a.pl

by

1To be more precise, this holds only under some additional conditions which are satisfied, however, in most practical applications
[23].

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

106

Informed Search

e_cost(Node,Goal,D) :- dist(Node,Goal,D).

e_cost(Node,Goal,D) :- dist(Goal,Node,D).

with dist/3 essentially implementing Table 3.1,

dist(s,a,85). ... dist(s,f,31). dist(s,g,14).

dist(g,a,98). ... dist(g,f,28).

...

dist(b,a,52).

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Applications of Prolog

107

Informed Search

[88-[d]-0]
1©

�� [98-[e,d]-35, 92-[s,d]-62, 150-[a,d]-55]
2©

��

[92-[s,d]-62, 98-[e,d]-35, 150-[a,d]-55]
1©

�� [242-[a,s,d]-147, 98-[e,d]-35, 150-[a,d]-55]
2©

��

[98-[e,d]-35, 150-[a,d]-55, 242-[a,s,d]-147]
1©

�� [126-[f,e,d]-72, 132-[b,e,d]-89, 150-[a,d]-55, 242-[a,s,d]-147]
2©

��

[126-[f,e,d]-72, 132-[b,e,d]-89, 150-[a,d]-55, 242-[a,s,d]-147]
1©

��

[125-[g,f,e,d]-100, 132-[b,e,d]-89, 150-[a,d]-55, 242-[a,s,d]-147]
2©

��

[125-[g,f,e,d]-100, 132-[b,e,d]-89, 150-[a,d]-55, 242-[a,s,d]-147]
1©

��

[132-[b,e,d]-89, 150-[a,d]-55, 242-[a,s,d]-147]
2©

��

[132-[b,e,d]-89, 150-[a,d]-55, 242-[a,s,d]-147]
1©

��

[132-[c,b,e,d]-132, 236-[a,b,e,d]-141, 150-[a,d]-55, 242-[a,s,d]-147]
2©

��

[132-[c,b,e,d]-132, 150-[a,d]-55, 236-[a,b,e,d]-141, 242-[a,s,d]-147]
3©

�� success

Figure 3.2: Hand Computations: The Evolution of the Agenda for the A–Algorithm (from d to c in Fig 3.1)

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

108

Informed Search

• The actual edge costs defined by edge cost/3 . For the network search problem, this is defined in
graph a.pl by

edge_cost(Node1,Node2,Cost) :- link(Node1,Node2),

e_cost(Node1,Node2,Cost).

Built-in Predicate: keysort(+List,-Sorted)

Unifies Sorted with the sorted version of List . The entries in List have to be
in the form key-term and they will be sorted in ascending order of the value
of key .
Example: Sort a list of names with ages according to increasing values of age.
(Facts for age/2 to be entered manually.)

?- consult(user).

|: age(adam,34).

|: age(tracy,18).

|: age(george,15).

|:
�� ��Ctrl +
�� ��D

% user compiled 0.00 sec, 480 bytes

Yes

?- bagof(Age- Name,age(Name, Age),L), keysort(L,Sorted).

L = [34-adam, 18-tracy, 15-george]

Sorted = [15-george, 18-tracy, 34-adam]

Yes

The interactive session below shows that the path d → e → b → c is a shortest one from d to c.

?- consult(graph a).

% asearches compiled into a ida idaeps 0.00 sec, 7,736 bytes

% links compiled into edges 0.00 sec, 1,804 bytes

% graph a compiled 0.00 sec, 16,584 bytes

?- a search(d,c,PathFound), total cost(PathFound,Cost).

PathFound = [d, e, b, c]

Cost = 132

3.1.3 Iterative Deepening A∗ and its ε–Admissible Version

Application of the A–Algorithm to a more substantial example in Sect. 3.2 will reveal that the A–Algorithm
may fail due to excessive memory requirements.2 Clearly, there is scope for improvement.

In the mid 1980s, a new algorithm was conceived by Korf [20] combining the idea of Iterative Deepening
(Sect. 2.6) with a heuristic evaluation function; the resulting algorithm is known as Iterative Deepening A∗

(IDA∗).3 The underlying idea is as follows.

• Use Depth First as the ‘core’ of the algorithm.

2We can see at this stage already that there is a special case of the A–Algorithm where lots of memory is required: the
A–Algorithm specializes to Breadth First if unit edge costs and the zero heuristic are assumed.

3Noteworthy is also a more recent work by Korf [21] analysing IDA∗.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

109

Informed Search

• Convert the core into a kind of Bounded Depth First Search with the bound (the horizon) now not being
imposed on the length of the paths but on their F -values.

• Finally, imbed this ‘modified’ Bounded Depth First Search into a framework which repeatedly invokes it
with a sequence of increasing bounds. The corresponding sequence of bounds in Iterative Deepening was
defined as a sequence of multiples of some constant increment; a unit increment in the model implemen-
tation. The approach here is more sophisticated. Now, in any given phase of the iteration, the next value
of the bound is obtained as the minimum of the F -values of all those paths which had to be ignored in
the present phase. This approach ensures that in the new iteration cycle the least number of paths is
extended.

The pseudocode of IDA∗ won’t be given here; it should be possible to reconstruct it from the above informal
description. It can be shown that IDA∗ is admissible under the same assumptions as A∗.

The so-called ε–admissible version of IDA∗ (IDA∗–ε) is a generalization of IDA∗. It is obtained by extending
the F -horizon to

ε + the minimum of all F -values of paths ignored

with some fixed ε ≥ 0. (It clearly specializes to IDA∗ for ε = 0.) This algorithm may ‘catch’ a solution which
otherwise would fall just outside the current F -horizon. IDA∗–ε may therefore find suboptimal solutions with

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

Applications of Prolog

110

Informed Search

�

�

�

�

?- consult(graph a).

% asearches compiled into a ida idaeps 0.00 sec, 7,736 bytes

% links compiled into edges 0.00 sec, 1,804 bytes

% graph a compiled 0.00 sec, 16,584 bytes

Yes

?- path.

Select start node s, a, b, ..., f, g: d.

Select goal node s, a, b, ..., f, g: c.

Select algorithm (a/ida/idaeps)... a.

% 586 inferences in 0.00 seconds (Infinite Lips)

Solution in 3 steps.

d -> e -> b -> c

Total cost: 132

Yes

Figure 3.3: An Interactive Session. (See Exercise 3.1.)

Node 1 2 3 4 5 6 7 8 9 10
Co-ordinates (1, 4) (2, 7) (2, 9) (3, 4) (3, 5) (3, 9) (4, 1) (4, 5) (4, 9) (5, 4)

Table 3.2: Node Co-ordinates in the Network in Fig. 3.4

broadly the same effort and memory as IDA∗.4

Both versions, IDA∗ and IDA∗–ε, are implemented in asearches.pl.
Exercise 3.1. Complete the definition of graph a.pl to solve the network search problem in Fig. 3.1 as

illustrated by the interactive session in Fig. 3.3. (The user should be able to run any of the three algorithms
discussed here.) �

Exercise 3.2. Fig. 3.4 shows a small directed network with the nodes’ co-ordinates shown in Table 3.2. Let
the length of an edge be the city block (or Manhattan) distance of its endpoints.5

(a) Find the shortest route from node 1 to node 10 manually by using the A–Algorithm with the straight
line heuristic.

(b) Write a module (graph b.pl, say), which uses asearches.pl, for finding the shortest route as before but
now the user should be able to select the algorithm in the style shown in Fig. 3.3.

�

Exercise 3.3. (Adjacency matrix) To represent the network in Fig. 3.4, you will have directly defined the
connectivity predicate link/2 by a collection of facts.6 A more flexible and elegant alternative to record the
connectivity of a network is by using an adjacency matrix . The entries of this are zero everywhere except for

4IDA∗–ε may not return an optimal solution. An example for this will be seen in Sect. 3.2.
5The city block distance between two points is the shortest distance when measured in a zigzag parallel to the co-ordinate axes.

Thus, for example, the nodes 6 and 8 are |3− 4|+ |9− 5| = 5 units apart.
6In all likelihood the same goes for the predicate that you will have used to record the nodes’ co-ordinates from Table 3.2.

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

111

Informed Search

1 �
�
�

�
�
�!

2 �
�
�

�
�
�!

"
"
"
"
"
"
"
""#

3

�
�
�

�
�
�!

$
$
$
$
$
$
$
$$%

4 �

5 �
�
�
�
�
�
�&

6

��
�
�
�
�
�'

7

�
�
�
�
�
�&8 �

9

�
�
�
�
�
�'

10

Figure 3.4: A Directed Network. (See Exercise 3.2.)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 3.5: Adjacency matrix of the network in Fig. 3.4

positions (i, j) where there is a directed edge from node i to node j; these entries are unity. Fig. 3.5 shows the
adjacency matrix for the network in Fig. 3.4. Let this be defined by a Prolog fact such as

adj(1,[[0,1,1,0,0,0,0,0,0,0],

[0,0,0,1,1,1,0,0,0,0],

.

[0,0,0,0,0,0,0,0,0,0]]).

(3.3)

Let us also assume that the co-ordinates of the nodes from Table 3.2 are implemented by the Prolog fact

co_ord(1,[(1,4),(2,7),(2,9),(3,4),(3,5),(3,9),(4,1),(4,5),(4,9),(5,4)]).

(a) Define a predicate make links(+A) which will write to the database the facts for link/2 corresponding to
the adjacency matrix A . Also define a predicate make co ordinates(+C) which takes a list of co-ordinates
(list of pairs) C and writes to the database the corresponding facts in the form in(Node,X co ord,Y co ord) .
(Remove old definitions from the database before writing to it.)

(b) Now, after revising your solution of Exercise 3.2, it should be possible to search the network in Fig. 3.4
thus

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

112

Informed Search

?- adj(1, A), co ord(1, Co), path(A, Co).

Select start node 1, ..., 10: 1.

Select goal node 1, ..., 10: 10.

Select algorithm (a/ida/idaeps)... a.

% 561 inferences in 0.00 seconds (Infinite Lips)

Solution in 4 steps.

1 -> 2 -> 5 -> 8 -> 10

Total cost: 10

Yes

Notice in particular that the predicate path(+A,+Co) should initiate the search for the network with ad-
jacency matrix A and list of node co-ordinates Co . Make use of make links/1 and make co ordinates/1

from part (a) when defining path/2 . Your implementation will be able to cope with any directed network
specified in this manner. (Minor point: Display the correct number of nodes for the user to choose from.)

(c) Use your implementation to determine the shortest path from node 1 to node 26 in the network in Fig. 3.6,
p. 113. The node co-ordinates are given in Table 3.3, and, as before, the edge lengths should be calculated

LIGS University
based in Hawaii, USA

 ▶ enroll by October 31st, 2014 and

 ▶ save up to 11% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://bookboon.com/
http://bookboon.com/count/advert/ff2a784e-44d0-4687-80af-a3bc00b4ceb5

Download free eBooks at bookboon.com

Applications of Prolog

113

Informed Search

1 �
�
�
�
�
�'

�
�
�
�
�
�
�&

2

�
�
�!

"
"
"
"
"
"
"
""#

3�
�
�

�
�
�!

4
�
�
�

$
$
$
$
$
$
$
$$%
5 �
�
�
�
�
�
�&

6

��
�
�
�
�
�'
7 �
�
�
�
�
�
�&

8

��
�
�
�
�
�'
9�
�
�

�
�
�!

"
"
"
"
"
"
"
""#

10�
�
�!

�
�
�

$
$
$
$
$
$
$
$$%
11

�
�
�!

"
"
"
"
"
"
"
""#

12�
�
�

�
�
�!

13

�
�
�

$
$
$
$
$
$
$
$$%
14 �
�
�
�
�
�
�&

15

��
�
�
�
�
�'
16�
�
�

�
�
�!

"
"
"
"
"
"
"
""#

17�
�
�!

�
�
�

$
$
$
$
$
$
$
$$%
18 �
�
�
�
�
�
�&

(
(
(
(
(
(
(
(
(
(
(()

19 ��
�
�
�
�
�'

�
�
�
�
�
�&

20

��
�
�
�
�
�'

*
*
*
*
*
*
*
*
*
*
**+
21

�
�
�!

"
"
"
"
"
"
"
""#

22�
�
�

�
�
�!

23

�
�
�

$
$
$
$
$
$
$
$$%
24

�
�
�!

25

�
�
�

26

Figure 3.6: Network for Exercise 3.3, Part (c)

Node 1 2 3 4 5 6 7 8 9
Co-ordinates (1, 2) (2, 7) (2, 14) (2, 20) (3, 2) (3, 17) (4, 5) (4, 8) (5, 2)

Node 10 11 12 13 14 15 16 17 18
Co-ordinates (5, 20) (6, 13) (6, 17) (6, 19) (7, 2) (7, 15) (8, 7) (8, 19) (9, 4)

Node 19 20 21 22 23 24 25 26
Co-ordinates (9, 8) (9, 18) (10, 3) (10, 16) (10, 19) (11, 3) (11, 12) (12, 5)

Table 3.3: Node Co-ordinates in the Network in Fig. 3.6

by the city block distance.7

(The model solution for this exercise is in graph c.pl.) �

Exercise 3.4. (Sparsity) If the adjacency matrix of a network is sparse, i.e. most of its entries are zero
(Fig. 3.5), it is a good idea to apply a compression scheme for storing it in the database. The following is a
simple compression scheme. As each row can be thought of as a concatenation of lists comprising zeros and
ones, we shall denote repetitions of the same character C by N-C where N is the number of times the character
C appears. Thus, for example, [1-0, 2-1, 7-0] will stand for the first row of the matrix in (3.3). Define a
predicate decompress(+C,-A) for converting a compressed matrix C into the corresponding adjacency matrix
A .8

Hint. A concise definition may be achieved by adopting the functional programming style:

1. Define a predicate for converting terms of the form N-C to a list comprising N copies of C .

2. Define now a predicate by mapping the predicate in (1) followed by applying flatten/2 .

7We shall meet this network in a different context in Sect. 3.4 as the search graph of the maze problem in Fig. 3.10, p. 122.
8The query in Exercise 3.3, part (b), may then equivalently be issued by

?- c adj(1, C), decompress(C, A), co ord(1, Co), path(A, Co).

if c adj/2 is used in an obvious manner for defining compressed adjacency matrices.

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

114

Informed Search

3 . . . 4 . . . 5

. 8 2

. 7 . . . 1 . . . 6

. 3 2

. . . . 4 . . . 5

. 1 . . . 6 .

. . 3 2

. 4 1 . .

. 5

1 . .

. . .

. . .

MH = 2 + 2 + 2 + 0 + 2 + 0 + 3 + 1 = 12

Figure 3.7: Calculating the Manhattan Distance between the tile arrangements in Fig. 2.45

3. Finally, implement decompression by mapping the predicate in (2) to the compressed matrix.

(The solution is in graph c.pl.) �

3.2 Case Study: The Eight Puzzle Revisited

For some choices of the terminal states for the Eight Puzzle we have not been able to find a solution using blind
search (Table 2.1, p. 100). We are going to re-examine this puzzle here by informed search.

3.2.1 The Heuristics

A popular heuristic for the Eight Puzzle is the Manhattan Distance (MH). For two tile arrangements, the
MH is the minimum total number moves all eight tiles need to be moved individually from their initial to
their respective final positions. Whereas in the original version of the puzzle prior to moving a tile we had to
make space by moving tiles which were ‘in the way’, now in this relaxed problem the obstacle tiles are simply
ignored. (As before, moves sideways and up and down are allowed only.) For example, the MH between the
tile arrangements in Fig. 2.45, p. 99, is 12 as shown in Fig. 3.7. The MH never exceeds the actual distance (i.e.
the minimum number of moves needed to convey one configuration to the other) which is 16 here (Fig. 2.46,
p. 101). The MH is therefore an admissible heuristic.

The predicate e cost(mh,+State1,+State2,-C)9 returns the estimated cost between State1 and State2
as measured by the MH; for the states in Fig. 2.45 we have, for example,

?- e cost(mh,state(3,4,5,8,0,2,7,1,6),state(1,2,3,8,0,4,7,6,5),C).

C = 12

9In the first argument we indicate the heuristic employed. (In Exercise 3.5 we will be considering another heuristic too.)

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

115

Informed Search

To implement this predicate, we first represent the system’s states in matrix form, i.e. by a list comprising
three lists.

matrix_form(state(T11,T12,T13,T21,T22,T23,T31,T32,T33),

[[T11,T12,T13],[T21,T22,T23],[T31,T32,T33]]).

Given now two matrix representations, Matrix1 and Matrix2 , we find the number of steps D needed to convey
the tile located at (i, j) in Matrix1 to its new position in Matrix2 by applying mh distance/5 , defined by

mh(I,J,Matrix1,Matrix2,D) :- ijth(I,J,Matrix1,E),

((E \= 0,

ijth(K,L,Matrix2,E),

D is abs(I - K) + abs(J - L));

D = 0), !.10

For example, the number of steps in the seventh sequence of tile moves in Fig. 3.7 is verified by

?- mh(3,2,[[3,4,5],[8,0,2],[7,1,6]],[[1,2,3],[8,0,4],[7,6,5]],D).

D = 3

Finally, as seen in Fig. 3.7, the MH between any two tile arrangements (in matrix notation) is the sum of the
number of moves for each individual tile.

mh(Matrix1,Matrix2,D) :- mh(1,1,Matrix1,Matrix2,D11),

...

mh(3,3,Matrix1,Matrix2,D33),

D is D11 + D12 + ... + D33.

Exercise 3.5. Another heuristic for the eight puzzle is the number of misplaced tiles (MP): each tile already
in the right position will contribute zero whereas each of the other tiles will contribute unity. Implement this
heuristic by e cost(mp,+State1,+State2,-C) . Example:

?- e cost(mp,state(3,4,5,8,0,2,7,1,6),state(1,2,3,8,0,4,7,6,5),C).

C = 6

Thus, this heuristic does not exceed the MH11 which itself is admissible. Hence MP is admissible. (MP is
defined in eight puzzle a.pl.) �

3.2.2 Prolog Implementation

The Prolog implementation is in the file eight puzzle a.pl. A sample run is shown in Fig. 3.8, p. 116. For
example, case 9 is now solvable while previously it was not viable (Table 2.1, p. 100). Table 3.4 shows the
CPU times for the heuristic searches using a 300 MHz machine. (Unsuccessful cases and those with excessive
computing times have been omitted.) Comparing Table 3.4 with Table 2.1 shows the dramatic benefit of using

10The predicate ijth(?I,?J,+Matrix,?Entry) is defined here by

ijth(I,J,ListOfRows,E) :- nth1(I,ListOfRows,Row), nth1(J,Row,E).

It is used in two modes. First, to get access to the (i, j)th entry of a matrix, use the mode ijth(+I,+J,+Matrix,-Entry) . Then,
to identify the position of Entry in Matrix , use ijth/4 in the mode ijth(-I,-J,+Matrix,+Entry) .

11In fact, MP is at most the number of tiles, i.e. 8. Since MH is 12 here, we know without checking further that MP is less than
MH.

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

116

Informed Search

�

�

�

�

?- consult(eight puzzle a).

% asearches compiled into a ida idaeps 0.00 sec, 7,704 bytes

% eight links compiled into links 0.00 sec, 4,100 bytes

% eight puzzle a compiled 0.00 sec, 22,288 bytes

Yes

?- tiles.

Start state for test case number 1:

8 1 2

7 3

6 4 5

...

Start state for test case number 9:

5 6 7

4 8

3 2 1

...

Select test case (a number between 1 and 10)... 9.

Select heuristic (mh/mp)... mh.

Select algorithm (a/ida/idaeps)... a.

Solution in 30 steps.

Show result in full? (y/n) y.

5 6 7

4 8

3 2 1

5 6 7

4 2 8

3 1

...

1 3

8 2 4

7 6 5

1 2 3

8 4

7 6 5

Yes

Figure 3.8: Solving the Eight Puzzle by Heuristic Search

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

117

Informed Search

Test Case Number 1 2 3 4 5 6 7 8 9 10
Goal Node at Depth 8 8 10 12 13 16 16 20 30 30

mp
a 0.1 0.1 0.0 0.3 0.7 26.8 14.3 - - -

CPU ida 0.1 0.1 0.1 0.5 1.0 4.2 5.1 59.9 - -
Seconds

mh
a 0.0 0.0 0.1 0.1 0.1 0.9 0.7 38.0 42.0 -

ida 0.1 0.1 0.0 0.1 0.1 0.3 0.8 8.1 2.8 52.9

Table 3.4: CPU Times (in Seconds) for the Eight Puzzle with Heuristic Search

heuristic search. It confirms furthermore that MH is better than MP and that IDA∗ is preferable to the
A∗–Algorithm.

Case 9 becomes viable for the number of misplaced tiles heuristic for IDA∗–ε. With ε = 25, we get a solution
in 32 steps in 30.4 CPU seconds.

Exercise 3.6. (Other Algorithms) As precursors to the A–Algorithm, in many AI books two other algo-
rithms are also discussed: Hill Climbing and Best First Search (e.g. [34]).

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

Applications of Prolog

118

Informed Search

Hill Climbing is a modification of Depth First in that the nodes obtained by expanding a parent node will be,
prior to them being put to the front of the agenda, sorted in ascending order of their estimated distances to the
goal node.12

Best First is an extension of the previous idea in that now, prior to choosing the node to be expanded next,
all open paths in the agenda are sorted in ascending order of their estimated distances to the goal node.13

You should implement these two algorithms.
Notes.

(a) Model your implementation of the search algorithms on asearches.pl. As in asearches.pl, represent
the estimated cost of a path by a prefix; no postfix is needed now.

(b) Model your solution of the Eight Puzzle on eight puzzle a.pl.

(c) Run the implementation and interpret the results.

(The model solution will be found in bsearches.pl and eight puzzle b.pl.) �

3.3 Project: Robot Navigation14

Develop a Prolog program that can be used to guide a robot in the matrix shown in Fig. 3.9 along a shortest
route from any cell to any other cell.15 The robot should be able to move parallel to the walls but not diagonally.
Notes.

1. Use the search algorithms’ implementations in asearches.pl.

2. Use the city block distance as a heuristic H .

3. There are several possibilities to model the ’cost’ of a path. The simplest is to take its length as a measure
of cost, i.e.

G = path length (3.4)

The length is the sum of the edge costs each of which is in our application unity; we therefore declare

edge_cost(_,_,1).

Using this measure, the cost of the path found in Fig. 3.9 is 14.

4. Experiments using the cost measure in (3.4) suggest that the problem cannot always be solved by the
A–Algorithm as the agenda may become excessively large. This will happen if there are too many paths
of the same length sharing the same endpoints. The cost defined by

G = path length + δ × path tortuosity (3.5)

12The underlying intuitive expectation is here that expanding nodes that are deemed closer to the goal node will lead faster to
the goal node.

13Best First is therefore a kind of A–Algorithm with the G component in (3.1) set to zero.
14A simplified version of the problem described in this section served as a coursework problem in the late Prof. Imad Torsun’s

Prolog lectures in the late 1990s.
15The matrix layout (robot floorplan on Fig. 3.9) is taken from [23, p. 83].

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

119

Informed Search

�

�

�

�

?- consult(robot).

% rsearches compiled into rsearches 0.00 sec, 7,924 bytes
% floorplan compiled into floorplan 0.05 sec, 9,524 bytes

% robot compiled 0.05 sec, 25,116 bytes
Yes
?- robot.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
.

+---+---+---+---+---+---+---+---+---+---+---+
1 | | | | | | | | | | | | . . . 1

+---+---+---+---+---+---+---+---+---+---+---+
2 | | | | | | | | | | | | . . . 2

+---+---+---+---+---+---+---+---+---+---+---+
3 | | | | | | | | | | | | . . . 3

+---+---+---+---+---+---+---+---+---+---+---+
4 | | | | | | | | | | | | . . . 4

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
5 | | |XXX|XXX|XXX|XXX|XXX|XXX| | | | | | | 5

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
6 | | |XXX|XXX| | |XXX|XXX| | | | | | | 6

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
7 | | |XXX|XXX| | |XXX|XXX| | | | | | | 7

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
8 | | | | | | | | | | | | . . . 8

+---+---+---+---+---+---+---+---+---+---+---+
9 | | | | | | | | | | | | . . . 9

+---+---+---+---+---+---+---+---+---+---+---+
10 | | | | | | . . . | | | | . . . 10

+---+---+---+---+---+ +---+---+---+
11 | | | | | | . . . | | | | . . . 11

+---+---+---+---+---+ +---+---+---+
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Select start cell ... cell(5,11).
Select goal cell ... cell(7,3).

Select algorithm (a/ida/idaeps)... a.

% 842,633 inferences in 5.66 seconds (148875 Lips)

From cell(5, 11) to cell(7, 3) in 14 moves:
1 2 3 4 5 6 7 8 9 10 11 12 13 14
.

+---+---+---+---+---+---+---+---+---+---+---+
1 | | | | | | | | | | | | . . . 1

+---+---+---+---+---+---+---+---+---+---+---+
2 | | | | | | | | | | | | . . . 2

+---+---+---+---+---+---+---+---+---+---+---+
3 | | | | | | | * * * * * | | | . . . 3

+---+---+---+---+---+---+---+---+-*-+---+---+
4 | | | | | | | | | * | | | . . . 4

+---+---+---+---+---+---+---+---+-*-+---+---+---+---+---+
5 | | |XXX|XXX|XXX|XXX|XXX|XXX| * | | | | | | 5

+---+---+---+---+---+---+---+---+-*-+---+---+---+---+---+
6 | | |XXX|XXX| | |XXX|XXX| * | | | | | | 6

+---+---+---+---+---+---+---+---+-*-+---+---+---+---+---+
7 | | |XXX|XXX| | |XXX|XXX| * | | | | | | 7

+---+---+---+---+---+---+---+---+-*-+---+---+---+---+---+
8 | | | | | * * * * * * * * * | | | . . . 8

+---+---+---+---+-*-+---+---+---+---+---+---+
9 | | | | | * | | | | | | | . . . 9

+---+---+---+---+-*-+---+---+---+---+---+---+
10 | | | | | * | . . . | | | | . . . 10

+---+---+---+---+-*-+ +---+---+---+
11 | | | | | * | . . . | | | | . . . 11

+---+---+---+---+---+ +---+---+---+
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Yes

Figure 3.9: Robot Navigation

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

120

Informed Search

where
path tortuosity = number of turns

will differentiate between such paths sufficiently enough for excessive growth of the agenda to be avoided.
To guarantee that all least cost paths are also shortest paths, choose δ > 0 small enough such that a
shorter path, however tortuous, will always be assigned a smaller cost. Assuming that no path will have
more than, say, nine turns, δ = 0.1 will do. Using this measure, the cost of the path found in Fig. 3.9 is
14.3.16

5. Your implementation using (3.4) will always succeed if Iterative Deepening A∗ is used but may run out
of memory for the A–Algorithm.

6. A more ambitious implementation will use (3.5), and this will always succeed, also for the A–Algorithm.
The implementations in asearches.pl can cope with the usual cost structure only, i.e. where each edge
is assigned a fixed cost. To cater for the more complex cost structure in (3.5), you should devise a
modified version of asearches.pl. (The model solution uses rsearches.pl that is an adaptation of
asearches.pl.)

7. The predicate defining the floor layout, called cell/2 in the model implementation, may be defined by
facts as follows.

cell(1,1). cell(1,2). ... cell(11,11).

It would be rather tedious, however, to enter these facts into the database manually and therefore they
are assert ed ([9, p. 80]) by invoking a rule-based equivalent, position/2 , prior to running the main
body of the program. For example, the upper block of cell positions may be defined by

position(X,Y) :- between(1,11,X), between(1,4,Y).

which then is followed by the assert ion of the facts defining cell/2 by layout/0 as shown below.

layout :- retractall(cell(,)),

position(X,Y),

assert(cell(X,Y)),

fail.

9>>=
>>;

failure driven loop ([9, p. 77])

layout.
¯

catch-all clause

This is a simple form of memoization (e.g. [19], p. 179 and [28], p. 181), aimed at saving computing
time during the search process. In addition, it introduces some flexibility, as the suggested arrangement
allows the floor layout to be easily modified if required.

8. The top level module of the model implementation is in robot.pl. It uses the modules in rsearches.pl

(or asearches.pl, depending on which cost measure is being employed) and floorplan.pl. The latter
implements the path’s display on the terminal as shown in Fig. 3.9. (A less ambitious solution will display
the path by showing its co-ordinates only.)

16By contrast, the path from cell(5,11) to cell(7,3) and having turns at cell(5,8), cell(9,8), cell(9,4) and cell(7,4) has
the same length as the one found in Fig. 3.9 but it is more tortuous as it changes directions four times rather than thrice. It will
be assigned the cost of 14.4.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

121

Informed Search

3.4 Project: The Shortest Route in a Maze

Develop a Prolog program for searching for a shortest path in a maze of a specific kind with the following
features.

• The program should search in mazes exemplified in Fig. 3.10 whereby

– The gates are arranged in groups parallel to each other;

– Adjacent groups of gates are a unit distance apart;

– Groups of gates are numbered 1, 2, . . . (up to 12 in Fig. 3.10);

– Group number 1 comprises the IN gate only;

– The group with the highest number (here: 12) comprises the OUT gate only;

– Gates are of unit width;

– The position of the gates relative to the left wall is recorded by a number (1, . . . , 20 in Fig. 3.10) and
the overall width of the maze is determined by the position of the rightmost gate;

• The program should display on the terminal the maze and the shortest path found.

Furthermore, as seen in Fig. 3.10, the program should also have the following features.

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Applications of Prolog

122

Informed Search

�

�

�

�

?- consult(maze).

% maze_disp compiled into display 0.05 sec, 18,816 bytes
% asearches compiled into a_ida_idaeps 0.00 sec, 7,660 bytes
% maze compiled 0.11 sec, 41,972 bytes

Yes
?- maze.

Select test case (a number between 1 and 5)... 2.
Select heuristic (zero/ed/alt)... ed.
Select algorithm (a/ida/idaeps)... a.

% 77,949 inferences in 0.55 seconds (141725 Lips)

OUT 10 15 20
| | * | . . . |

12+---+---+---+---+ * +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+12
| | * | . . . |
| * * * * * . . . |
| | * | . . | | . . |

11+---+---+ * +---+---+---+---+---+---+---+---+ +---+---+---+---+---+---+---+---+11
| | * | . . | | . . |
| * |
| | * | . . . | | | | . |

10+---+---+ * +---+---+---+---+---+---+---+---+---+---+---+---+ +---+---+ +---+10
| | * | . . . | | | | . |
| * * * |
| | * | . | | . . | | . |
9+---+---+---+ * +---+---+---+ +---+---+---+---+---+---+---+---+---+ +---+---+ 9
| | * | . | | . . | | . |
| * * * * * * * . . . |
| . | * | . . | | . |
8+---+---+---+---+---+---+ * +---+---+---+---+---+---+---+---+---+---+---+ +---+ 8
| . | * | . . | | . |
| . * * * * * * * * * * * * * * * * * . |
| | | . . | * | . |
7+---+ +---+---+---+---+---+---+---+---+---+---+---+---+ * +---+---+---+---+---+ 7
| | | . . | * | . |
| . . * * * * * . |
| . . | * | . | | | | . |
6+---+---+---+---+---+---+---+---+---+---+---+---+ * +---+---+---+ +---+ +---+ 6
| . . | * | . | | | | . |
| * . . |
| | * | . . . | . |
5+---+ * +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ . + 5
| | * | . . . | . |
| * * * * * * * . . . |
| | * | | | . . . |
4+---+---+---+---+ * +---+---+ +---+---+---+---+---+---+---+---+---+---+---+---+ 4
| | * | | | . . . |
| * * * * * * * . . . |
| | * | . . . | | . |
3+---+ * +---+---+---+---+---+---+---+---+---+---+---+---+---+---+ +---+---+---+ 3
| | * | . . . | | . |
| * * * * * * * * * * * . . . |
| . | * | . | | . | . |
2+---+---+---+---+---+---+ * +---+---+---+---+---+---+ +---+---+---+---+---+ . + 2
| . | * | . | | . | . |
| * * * * * * * * * * * . . . |
| | * | |
1+---+ * +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 1
| | * | |

IN 5 10 15 20

Length of shortest path is 54
Yes

Figure 3.10: Maze Search

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

123

Informed Search

�Y

�
X

�����������������������

| |
| . | | . . | | . |

8+---+---+---+---+---+---+ +---+---+---+---+---+---+---+---+---+---+---+ +---+ 8
| . | | . . | | . |
| |
| | | . . | . | . |

7+---+ +---+---+---+---+---+---+---+---+---+---+---+---+ . +---+---+---+---+---+ 7
| | | . . | . | . |
| |
| . . | | . | | | | . |

6+---+---+---+---+---+---+---+---+---+---+---+---+ +---+---+---+ +---+ +---+ 6
| . . | | . | | | | . |
| |
| | | . . . | . |

5+---+ +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ . + 5
| | | . . . | . |
| |
| | . | | | . . . |

4+---+---+---+---+ . +---+---+ +---+---+---+---+---+---+---+---+---+---+---+---+ 4
| | . | | | . . . |
| |
| | | . . . | | . |

3+---+ +---+---+---+---+---+---+---+---+---+---+---+---+---+---+ +---+---+---+ 3
| | | . . . | | . |
| |
| . | | . | | . | . |

2+---+---+---+---+---+---+ +---+---+---+---+---+---+ +---+---+---+---+---+ . + 2
| . | | . | | . | . |
| |
| | | |

1+---+ +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 1
| | | |

IN 5 10 15 20

Figure 3.11: Calculating the Euclidean Heuristic H1

• The user should choose between three evaluation functions (of the form F = G+H), whereby the heuristic
component, H , is one of the following: zero (zero), the Euclidean distance (ed), or, an alternative distance
(alt) which will be described in Sect. 3.4.1. (All three suggested choices of H will be seen admissible.)

• The user should choose between three algorithms: A∗, Iterative Deepening A∗ and Iterative Deepening A∗–
ε.

• The program should return a display of the shortest path found and its length.

3.4.1 Suggested Implementation Details

The predicate gates/2 will be used to specify the structure of a maze. For example,

gates(2,[[2], [7,14,20], [2,17], [5,8], [2,20], [13,17,19],

[2,15], [7,19], [4,8,18], [3,16,19], [3,12], [5]]).

specifies the maze shown in Fig. 3.10. The first argument of gates/2 stands for the ‘test case number’; its
second argument takes a list-of-lists defining the structure of the maze in an obvious manner.

Heuristics

The zero heuristic H0. Put simply H0 ≡ 0.
The Euclidean heuristic H1. This is the straight line (‘Euclidean’) distance e between any two gates. Fig. 3.11

illustrates H1: to estimate the distance between two gates X and Y , simply use Pythagoras (3.6).

H1(X, Y) = e(X, Y) =
√

(17 − 2)2 + (3 − 7)2 = 15.52 (3.6)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

124

Informed Search

The alternative heuristic H2. If X and Y are in adjacent rows then put H2(X, Y) = e(X, Y). Assume now
that X and Y are at least two rows apart. H2(X, Y) is then defined with reference to Fig. 3.12. Take for each
row of gates between X and Y every gate in that row as an intermediate gate in a two-stage ‘flight’ between X
and Y . Keep the row fixed and compute the minimum of such ‘flight distances’ — each such minimum ‘flight
distance’ is obviously a lower bound on the true maze distance between X and Y . The alternative heuristic
H2(X, Y) is defined as the maximum of all such minimum flight distances, obtained by varying the in-between
rows of gates. Equations (3.7)-(3.8) illustrate the computation of H2.

H2(X, Y) = max { min { e(X, U1) + e(U1, Y),
e(X, U2) + e(U2, Y) } ,

min { e(X, V1) + e(V1, Y),
e(X, V2) + e(V2, Y) } ,

min { e(X, W1) + e(W1, Y),
e(X, W2) + e(W2, Y),
e(X, W3) + e(W3, Y) } }

(3.7)

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2015

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://bookboon.com/
http://bookboon.com/count/advert/030d71a6-2f39-462d-8d1e-a41900d437e0

Download free eBooks at bookboon.com

Applications of Prolog

125

Informed Search

�Y

�
X

�W1 �W2 �W3

�V1 �V2

�U1 �U2

| |
| . | | . . | | . |

8+---+---+---+---+---+---+ +---+---+---+---+---+---+---+---+---+---+---+ +---+ 8
| . | | . . | | . |
| |
| | | . . | . | . |

7+---+ +---+---+---+---+---+---+---+---+---+---+---+---+ . +---+---+---+---+---+ 7
| | | . . | . | . |
| |
| . . | | . | | | | . |

6+---+---+---+---+---+---+---+---+---+---+---+---+ +---+---+---+ +---+ +---+ 6
| . . | | . | | | | . |
| |
| | | . . . | . |

5+---+ +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ . + 5
| | | . . . | . |
| |
| | . | | | . . . |

4+---+---+---+---+ . +---+---+ +---+---+---+---+---+---+---+---+---+---+---+---+ 4
| | . | | | . . . |
| |
| | | . . . | | . |

3+---+ +---+---+---+---+---+---+---+---+---+---+---+---+---+---+ +---+---+---+ 3
| | | . . . | | . |
| |
| . | | . | | . | . |

2+---+---+---+---+---+---+ +---+---+---+---+---+---+ +---+---+---+---+---+ . + 2
| . | | . | | . | . |
| |
| | | |

1+---+ +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 1
| | | |

IN 5 10 15 20

Figure 3.12: Calculating the Alternative Heuristic H2

H2(X, Y) = max { min { 16.28, 15.77 } ,
min { 17.13, 21.72 } ,
min { 16.05, 18.03, 20.62 } } = 17.13

(3.8)

The result is an admissible heuristic. Equations (3.6) and (3.7)-(3.8) show that H2 is not worse than the
Euclidean heuristic H1, i.e.

H1(X, Y) ≤ H2(X, Y) ≤ true distance between X and Y

H2 will be, however, more expensive to compute than either H0 or H1.

Manual Implementation

As a first step towards a full implementation, the problem shall be solved for the maze in Fig. 3.10 with the
zero heuristic H0 and without returning a pictorial display of the path found. In this initial phase we won’t be
making use of gates/2 directly. Instead, the necessary information about the maze will be represented by a
collection of facts defining edge cost/3 thus

edge_cost(state(1,2),state(2,7),6).

edge_cost(state(1,2),state(2,14),13).

...

(The filename chosen to hold these clauses, tedious.pl, reflects the effort involved.) The above definition of
edge cost/3 can be derived from the search graph indicated in Fig. 3.13 below. We define link/2 in terms of
edge cost/3 by

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

126

Informed Search

state(1,2)

state(2,7) state(2,14) state(2,20)

state(3,2) state(3,17)

state(4,5) state(4,8)

...
...

�

������,

------.

�
�
�!

�
�
�/

�
�
�!

�
�
�/��

� �

������,

------.

13 196

6 11 13 4 19 4

4 7 13 10

Figure 3.13: Search Graph for the Gates’ Position

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

Applications of Prolog

127

Informed Search

link(Node1,Node2) :- edge_cost(Node1,Node2,_).

The positions of the terminal gates will be recorded in tedious.pl by

start_state(state(1,2)). final_state(state(12,5)).

Finally, the zero heuristic will be implemented by the definition

e_cost(_,_,0).

We are now in a position to find interactively the path shown in Fig. 3.10:

?- consult(tedious).

% asearches compiled into a ida idaeps 0.00 sec, 7,704 bytes

% tedious compiled 0.00 sec, 15,544 bytes

Yes

?- start state(S), final state(G), a search(S, G, PathFound), write term(PathFound,[]).

[state(1, 2), state(2, 7), state(3, 2), state(4, 5),

state(5, 2), state(6, 13), state(7, 15), state(8, 7),

state(9, 4), state(10, 3), state(11, 3), state(12, 5)]

Yes

Exercise 3.7. Complete the file tedious.pl and run the search for the maze in Fig. 3.10 by using the
heuristic H0. �

Full Implementation

The predicates which will be used by the search algorithms in asearches.pl should be defined in the top
module, maze.pl, say. Below you will find some guidelines for these and another predicate used to display the
result.

A rule-based version (in one clause) of link/2 will define the node connectivity; then, for example, for the
maze shown in Fig. 3.10 we get

?- consult(maze).

...

?- maze.17

Select test case (a number between 1 and 5)... 2.

Select heuristic (zero/ed/alt)... ed.

Select algorithm (a/ida/idaeps)... a.

...

?- link(state(3,17),Gate).

Gate = state(4, 5) ;

Gate = state(4, 8) ;

No

17This predicate, among other things, writes to the database the gates’ arrangement chosen by the user. The predicate gates/1

will be used to hold this information.

maze :- (retractall(gates());true),
select testcase(N),
assert((gates(AllGates) :- gates(N,AllGates))),
...

Now you should define link/2 for extracting the connectivity information from gates/1 .

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

128

Informed Search

The predicate e cost(+Heur,+G1,+G2,-Est) should return in Est the estimated distance of the gates G1
and G2 . Equations (3.6) and (3.7)-(3.8) are confirmed for example by

?- e cost(ed,state(3,17),state(7,2),Est).

Est = 15.5242

?- e cost(alt,state(3,17),state(7,2),Est).

Est = 17.1327

The pictorial display of the maze and the path found is accomplished by the predicate show picture(+Pic) ,
defined in the module maze disp.pl, with Pic specifying the maze and the path. To produce for example the
display in Fig. 3.10, Pic will be unified with the list of pairs

[(5, [5]), (3, [3,12]), (3, [3,16,19]), ..., (2, [2])]

(Pic allows to identify for each row the gate through which the path passes and the position of all the gates in
that row.)

Exercise 3.8. Complete the implementation of the maze search problem as described above. �

Exercise 3.9. The model implementation uses the straight line distance to derive heuristics. Modify the
implementation by basing the heuristics on the city block distance and observe and interpret changes in the
CPU time. �

Exercise 3.10. The idea of the alternative heuristic function H2 can be refined. For example, H3(X, Y)
may be defined for gates X and Y at least three rows apart by maximizing the minimum flight distances between
X and Y with two intermediate gates. Put H3(X, Y) = H2(X, Y) if X and Y are less than three rows apart.
Hn (n ≥ 4) may be defined in an analogous manner. Hn is a better heuristic than Hn−1, i.e. Hn ≥ Hn−1 but
it will be more expensive to compute. Experiment with these heuristics to find out whether the computational
benefit in the search process outwheighs the increased computing time for the heuristics themselves. �

Exercise 3.11. The search graph of the maze problem is acyclic, i.e. no node can be visited more than once
(e.g. Fig. 3.13). Path checking is therefore not required in this case. Disable path checking in asearches.pl

and confirm that the resulting implementation uses less CPU time. �

3.5 Project: Moving a Knight

Write a Prolog program which, given two positions on the chessboard, will find a shortest sequence of moves a
knight needs between these two positions.18 Your program will behave as indicated in Fig. 3.14. You should
experiment with the suggested heuristics to find out how long the search takes with each.

The model solution is in knight.pl and it uses asearches.pl.

18The present search problem originates from [10].

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

129

Informed Search

�

�

�

�

?- consult(knight).

% asearches compiled into a_ida_idaeps 0.00 sec, 7,704 bytes

% knight compiled 0.05 sec, 19,104 bytes

Yes

?- jumps.

Select heuristic (min/mh/ed/co)... ed.
Select algorithm (a/ida)... ida.
Select initial position of knight ([a-h][1-8])... a8.
Select final position of knight ([a-h][1-8])... h1.
cost limit/CPU time: 1/399.3
cost limit/CPU time: 4.42719/399.35
cost limit/CPU time: 4.49285/399.35
cost limit/CPU time: 4.52982/399.35
cost limit/CPU time: 4.60768/399.35
cost limit/CPU time: 4.61245/399.41
cost limit/CPU time: 4.63246/399.46
cost limit/CPU time: 4.84391/399.52
cost limit/CPU time: 4.89443/399.63
cost limit/CPU time: 5.2249/399.74
cost limit/CPU time: 5.23607/399.9
cost limit/CPU time: 5.26491/400.06
cost limit/CPU time: 5.40588/400.23
cost limit/CPU time: 5.40832/400.39
cost limit/CPU time: 5.41421/400.61
cost limit/CPU time: 5.44721/400.94
cost limit/CPU time: 5.72029/401.33
cost limit/CPU time: 5.78885/401.77
cost limit/CPU time: 5.84708/402.26
cost limit/CPU time: 5.86356/402.76
cost limit/CPU time: 5.89737/403.31
cost limit/CPU time: 6/403.91
% 474,024 inferences in 4.66 seconds (101722 Lips)
Solution in 6 steps:
a8 b6 a4 b2 d1 f2 h1

+---+---+---+---+---+---+---+---+
8 | X | | | | | | | |

+---+---+---+---+---+---+---+---+
7 | | | | | | | | |

+---+---+---+---+---+---+---+---+
6 | | X | | | | | | |

+---+---+---+---+---+---+---+---+
5 | | | | | | | | |

+---+---+---+---+---+---+---+---+
4 | X | | | | | | | |

+---+---+---+---+---+---+---+---+
3 | | | | | | | | |

+---+---+---+---+---+---+---+---+
2 | | X | | | | X | | |

+---+---+---+---+---+---+---+---+
1 | | | | X | | | | X |

+---+---+---+---+---+---+---+---+
a b c d e f g h

Yes

Figure 3.14: Sample Session: Moving a Knight

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

130

Informed Search

Suggested Heuristics

Let the letters annotating the board’s columns be replaced by 1, . . . , 8 and refer to the knight’s position by a
pair P = (x, y) with co-ordinates x, y ∈ {1, . . . , 8}. Define two heuristics H1 and H2 by

Hq(P, P ′) =

{
d1(P,P ′)

3 , when q = 1
d2(P,P ′)√

5
, when q = 2

(3.9)

where d1 and d2 denote respectively the city block distance (also called ‘Manhattan distance’) and the Euclidean
distance:

dq((x, y), (x′, y′)) =

{
|x − x′| + |y − y′|, when q = 1√

(x − x′)2 + (y − y′)2, when q = 2

H1 and H2 are referred to in Fig. 3.14 by mh and ed , respectively.

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

Applications of Prolog

131

Informed Search

�
�
��0

�
�
��'

--
--1

����,
�
�
�
�&

�
�
�
�2

----.

��
��3

+---+---+---+---+---+---+---+---+
8 | | | | | | | | |

+---+---+---+---+---+---+---+---+
7 | | | | | | | | |

+---+---+---+---+---+---+---+---+
6 | | | | | | | | |

+---+---+---+---+---+---+---+---+
5 | | | | | | | | |

+---+---+---+---+---+---+---+---+
4 | | | | | | | | |

+---+---+---+---+---+---+---+---+
3 | | | | | | | | |

+---+---+---+---+---+---+---+---+
2 | | | | | | | | |

+---+---+---+---+---+---+---+---+
1 | | | | | | | | |

+---+---+---+---+---+---+---+---+
1 2 3 4 5 6 7 8

Figure 3.15: The Knight Moves One Step

An interesting property of these heuristics is that none dominates the other.19

Admissibility. We show that both H1 and H2 are admissible. For pairs of positions one step apart, it is

dq(P, P ′) =

{
3, when q = 1√

5, when q = 2

(This is illustrated in Fig. 3.15 for P = (4, 6).) In general, if the sequence of positions

P = P0, P1, . . . , Pn = P ′

takes the knight from P to P ′ in the minimum number of moves n, say, then, by the Triangle Inequality for dq

it is
dq(P, P ′) = dq(P0, Pn)

≤ dq(P0, P1) + . . . + dq(Pn−1, Pn) =

{
3n, when q = 1√

5n, when q = 2

(3.10)

From (3.10) we have by the definition of Hq in (3.9) that

Hq(P, P ′) ≤ n

Generalization. We note in passing that for any q ≥ 1, Hq, defined by

Hq(P, P ′) =
dq(P, P ′)

(1 + 2q)1/q

with

dq((x, y), (x′, y′)) = (|x − x′|q + |y − y′|q)1/q

19By this we mean that there are positions P , P ′, Q and Q′ such H1(P, P ′) < H2(P, P ′) and H1(Q, Q′) > H2(Q, Q′). This holds
for example for P = (4, 3), P ′ = (7, 4), Q = (4, 3) and Q′ = (6, 1).

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

132

Informed Search

is an admissible heuristic.20

Combined heuristic. This we define by

Hco(P, P ′) = max{H1(P, P ′), H2(P, P ′)}

It is of course also admissible and it is a genuine improvement on both H1 and H2 since, as we have seen earlier,
none dominates the other.

A Non-Admissible Heuristic. Define Hmin by

Hmin((x, y), (x′, y′)) = min{|x − x′|, |y − y′|}

This is not admissible since Hmin((7, 2), (1, 8)) = 6 but (7, 2) → (5, 3) → (3, 4) → (2, 6) → (1, 8) is a sequence of
4 moves from (7, 2) to (1, 8). IDA∗ will indeed find this non-optimal sequence of moves if it is used with Hmin.

20The reasoning is as before with the following addenda. It is

dq(P, P ′) = ‖P − P ′‖q

with the q–norm ‖.‖q defined by

‖(x, y)‖q = (|x|q + |y|q)1/q

The Triangle Inequality for dq follows from the Minkowski Inequality for the q–norm

‖P + P ′‖q ≤ ‖P‖q + ‖P ′‖q

See, e.g. [31].

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

133

Text Processing

Chapter 4

Text Processing

Whereas the problems considered thus far were taken from Artificial Intelligence, we are going now to apply
Prolog to problems in text processing.

The present chapter is in three parts.
First, the Prolog implementation is described of a tool for removing from a file sections of text situated

between marker strings. (The tool is therefore a primitive static program slicer; [32] and [12].) This tool then is
used in a practical context for removing sample solutions from the LATEX source code of a solved exam script.
It is also shown in this context how SWI-Prolog code can be embedded into a Linux shell script.

The second part addresses the question of how Prolog can be used to generate LATEX code for drawing
parametric curves. Some new features of Prolog will thereby also be introduced.

The final part comprises a sequence of solved Prolog exercises, implementing a tool for drawing families of
parametric curves in LATEX. The exercises are of increasing complexity and finally describe how SWI-Prolog
can interact with Linux through a shell script.

4.1 Text Removal

4.1.1 Practical Context

I use LATEX on Linux for preparing examination papers. This is done in the following steps.

1. Create a LATEX source file in a text editor.

2. Translate the LATEX file into a a DVI file.

3. Translate the DVI file into a PDF file.

4. View the PDF file.

These steps are performed for exam.tex by running the Linux commands in Fig. 4.1.1 Upon execution of the
last line in Fig. 4.1, a new window will pop up and the exam paper may be viewed.

External examiners require examination papers with model answers. I create therefore a PDF file with model
solutions in the first instance where answers are appended to each subquestion. The answers are placed between

1bash-3.1$ is the system prompt in Fig. 4.1.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

134

Text Processing

�
�

�
�

bash-3.1$ latex exam.tex

bash-3.1$ dvipdf exam.dvi

bash-3.1$ kpdf exam.pdf

Figure 4.1: Processing the File exam.tex

some marker strings enabling me eventually to locate and remove all text between them when creating the final
LATEX source leading to the printed PDF for students. It is this text removal process which is automated by the
Prolog implementation to be discussed here.

4.1.2 Specification

Write a predicate sieve(+Infile,-Outfile,+Startmarker,+Endmarker) of arity 4 for removing all text in
the file named in Infile in between all occurrences of lines starting with text in Startmarker and those
starting with text in Endmarker . The result should be saved in the file named in Outfile . Outfile is without
marker lines. If Outfile already exists, its old version should be overwritten, if it does not exist, it should be
newly created. The file shown in Fig. 4.2 is an example of Infile with the marker phrases ‘water st’ and

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Applications of Prolog

135

Text Processing

‘water e’, say. (The file comprises a random collection of geographical names.) After the Prolog query

�� 	
Line starting with Startmarker�

�� 	
Line starting with Endmarker�

�� 	
Line starting with Startmarker�

�� 	
Line starting with Endmarker�

}

}

}

}

birmingham

new york

lake district

las vegas

grand canaria

london

water starts

pacific ocean

loch ness

north sea

water ends

kalahari desert

st andreas fault

north pole

water starts

mediterranean sea

lake balaton

lake konstanz

river thames

river danube

water ends

britain

europe

Figure 4.2: The File with waters

?- sieve(’with\ waters’, ’without\ waters’, ’water st’, ’water e’). 2

Yes

the file without_waters will have been created. This is shown in Fig. 4.3.

4.1.3 Implementation

Definition of Predicates

The main predicate sieve/4 is defined in terms of sieve/2 , both are shown in (P-4.1).

2Notice that the sequence of two characters ‘\ ’ represents the underscore. Likewise, ‘\. ’ will have to be typed for the dot in a
filename or marker string.

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

136

Text Processing

birmingham

new york

lake district

las vegas

grand canaria

london

kalahari desert

st andreas fault

north pole

britain

europe

Figure 4.3: The File without waters

Prolog Code P-4.1: Definition of sieve/4 and sieve/2

1 sieve(File_In, File_Out, Start_String, End_String) :-

2 see(File_In),

3 tell(File_Out),

4 told,

5 append(File_Out),

6 switch_off,

7 sieve(Start_String, End_String),

8 told,

9 seen, !.

10 sieve(Start_String, End_String) :-

11 atom_chars(Start_String, Start_List),

12 atom_chars(End_String, End_List),

13 get_line(Line),

14 ((append(Start_List,_,Line), switch_on); true),

15 (Line = [end_of_file];

16 atom_codes(A,Line),

17 ((switch(off), write(A)); true),

18 ((append(End_List,_,Line), switch_off); true),

19 sieve(Start_String, End_String)).

The predicates get line/1 (and its auxiliary get line/2), switch off/1 and switch on/1 are defined in
(P-4.2).

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

137

Text Processing

Prolog Code P-4.2: Auxiliaries for (P-4.1)

1 :- dynamic(switch/1).

2 switch_off :- retractall(switch(_)),

3 assert(switch(off)).

4 switch_on :- retractall(switch(_)),

5 assert(switch(on)).

6 get_line(List) :- get_line([], List).

7 get_line(Acc, List) :- get_char(Next),

8 ((Next = ’\n’, reverse([Next|Acc], List));

9 (Next = end_of_file, List = [Next]);

10 get_line([Next|Acc], List)).

For the SWI-Prolog built-ins atom chars/2 and atom codes/2 , the reader is referred respectively to pages
126 and 19 of [9].

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Applications of Prolog

138

Text Processing

Noteworthy are three more built-in predicates used here: the standard Prolog predicates see/1 , seen/0 (re-
spectively for directing the input stream to a file and redirecting it) and get char/1 for reading a character;
the example below illustrates their use by reading the first three characters of the file with_waters in Fig. 4.2.

?- see(with waters), get char(First), get char(Sec), get char(Third), seen.

First = b

Sec = i

Third = r

Yes

Details of Implementation

• The predicate get line/1 in (P-4.2) is defined in terms of get line/2 by the accumulator technique. It
reads into its argument the next line from the input stream. Example:

?- set prolog flag(toplevel print options, [max depth(20)]).

Yes

?- see(with waters), get line(First), get line(Sec), seen.

First = [b, i, r, m, i, n, g, h, a, m,

]

Sec = [n, e, w, , y, o, r, k,

]

Yes

The following observations apply.

1. It is seen from the above query that a line read by get line/1 is represented as a list of the characters
it is composed of.

2. By definition the last character of each line in a file is the new line character ‘\n’. That explains the
line break seen in the above query.

3. Finally (not demonstrated here), each file ends with the end-of-file marker ‘end_of_file’. The
one-entry list [end_of_file] is deemed to be the last line of every file by the definition in (P-4.2).

• The switches switch off/0 and switch on/0 are used, writing respectively switch(off) and switch(on)

in the Prolog database, respectively for removal and retention of lines from the input file.

• The main predicates are sieve/4 and sieve/2 in (P-4.1), the latter defined by recursion and called by
the former.

sieve/4 : this is the top level predicate.

1. Line 2 opens the input file.

2. The goals in lines 3-4 in (P-4.1) make sure that the earlier version of the output file (if there is such
a file) is deleted.

3. In line 5, the new output stream is opened via append/1 3.

4. In line 6, the switch is set to the position (‘off’), anticipating that initially lines will be retained.

3Not to be confused with the predicate append/3 !

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

139

Text Processing

5. In line 7, sieve/2 is invoked and processing is carried out.

6. Lines 8 and 9 close respectively output and input.

sieve/2 : this is called from sieve/4 .

1. Lines 14 and 18 contain the most interesting feature of this predicate: append/3 is used in them for
pattern matching. For example, the goal

append(Start_List,_,Line)

succeeds if the initial segment of the list Line is Start_List.

2. atom chars/2 is used in sieve/2 to disassemble the start and end markers into lists in preparation
for pattern matching.

3. Notice that the built-in predicate atom codes/2 can be used in two roles as the interactive session
below demonstrates.

?- atom_codes(A,[b, i, r, m, i, n, g, h, a, m]).

A = birmingham

Yes

?- atom_codes(birmingham, L).

L = [98, 105, 114, 109, 105, 110, 103, 104, 97, 109]

Yes

In line 16 of (P-4.1), atom codes/2 is used in its first role, i.e. to convert a list of characters to an
atom. This atom is the current line, it is written to the output file.

4. Recursion is stopped in sieve/2 (and control is returned to line 8 of sieve/4) when the end-of-file
marker is read (line 15).

4.1.4 Using a Linux Shell Script

Specification

Imbed the Prolog implementation from Sect. 4.1.3 into a Linux shell script for providing the same functionality
as the predicate sieve/4 does. The application obtained thereby will run without explicitly having to use the
SWI-Prolog system. The intended behaviour of the script is illustrated in Fig. 4.4. The dialogue shown in
Fig. 4.4 has the same effect as the Prolog session envisaged in Sect. 4.1.2.

[22] is an accessible introduction to Linux and the beginnings of shell scripting.

Implementation

Plan

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

140

Text Processing

�

�

�

�

bash-3.1$./sieve with\ waters without\ waters water\ st water\ e

% /home/acsenki/scripts/sieve.pl compiled 0.00 sec, 4,284 bytes

Input file : ’with waters’

Output file: ’without waters’

Text removal between the phrases ’water st’ and ’water e’

bash-3.1$ cat without waters

birmingham

new york

lake district

las vegas

grand canaria

london

kalahari desert

st andreas fault

north pole

britain

europe

Figure 4.4: Running the Shell Script sieve

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Applications of Prolog

141

Text Processing

The shell script should

1. Receive four arguments from the user (two filenames and two pattern strings),

2. Write them to a temporary file temp,

3. Invoke SWI-Prolog in the batch mode, which then

• Should open the temporary file temp,

• Should read the strings from temp,

• Should call sieve/4 to perform text removal,

• Should close temp

4. Close the Prolog system,

5. Report on the actions performed,

6. Delete temp.

Shell Script and Additional Prolog Predicates
The Linux shell script sieve in (S-4.1) is an implementation of the plan.

Linux Shell Script S-4.1: sieve

1 #!/bin/bash

2 if [$# -ne 4]; then

3 echo "Error: supply four arguments"

4 else

5 if [-e $1]; then

6 echo $1 > temp

7 echo $2 >> temp

8 echo $3 >> temp

9 echo $4 >> temp

10 #

11 pl -f sieve.pl -g go -t halt

12 #

13 echo "Input file : ’$1’"

14 echo "Output file: ’$2’"

15 echo "Text removal between the phrases ’$3’ and ’$4’"

16 #

17 rm temp

18 else

19 echo "Error: file ’$1’ does not exist"

20 fi

21 fi

In line 11 of (S-4.1), the Prolog source sieve.pl is invoked as a command line argument [33, Sect. 2.3]. sieve.pl
comprises (P-4.1), (P-4.2) from Sect. 4.1.3 and the code in (P-4.3).

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

142

Text Processing

Prolog Code P-4.3: Definition of go/0 and get string/1

1 go :- see(temp),

2 get_string(File_In),

3 get_string(File_Out),

4 get_string(Start_String),

5 get_string(End_String),

6 sieve(File_In, File_Out, Start_String, End_String),

7 seen.

8 %

9 % auxiliary predicate get_string/1 ...

10 %

11 get_string(String) :- get_line(List),

12 append(ShortList, [’\n’],List),

13 atom_chars(String, ShortList).

In go/0 from sieve.pl the existence of a file named temp is assumed, comprising four lines, the two file names
(input and output files) and the two marker patterns, forming one line each. The top level predicate is now
go/0 which then uses sieve/4 .
Running the Script

The script sieve makes (and eventually deletes) a temporary file temp, holding the four strings read by the
predicate go/0 . The script invokes the Prolog source sieve.pl, effecting a result as specified in Sect. 4.1.2.
Some additional features are also demonstrated in the Linux command window Fig. 4.5.

�

�

�

�

bash-3.1$ chmod -x sieve

bash-3.1$ ls -l sieve

-rw--w----+ 1 acsenki 2042 426 Sep 2 16:11 sieve

bash-3.1$./sieve with\ waters without\ waters water\ st water\ e

bash: ./sieve: Permission denied

bash-3.1$ chmod +x sieve

bash-3.1$./sieve with\ waters without\ waters water\ st

Error: supply four arguments

bash-3.1$./sieve with\ waters without\ waters water\ st water\ e

Input file : ’with waters’

Output file: ’without waters’

Text removal between the phrases ’water st’ and ’water e’

bash-3.1$ ls temp

ls: temp: No such file or directory

Figure 4.5: Another Run of the Shell Script sieve

Comments on Fig. 4.5.

1. The first three commands illustrate what happens if initially sieve is not executable.

2. The fourth command makes sieve executable.

3. The fifth command illustrates the script’s response if less than four arguments are supplied.

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

143

Text Processing

4. The next command shows the normal mode of operation. The response has to be read in conjunction
with (S-4.1). The output file created is without_waters; it is of course identical to that in Fig. 4.3.

5. The last command confirms that the temporary file temp has been removed.

4.1.5 Application: Removing Model Solutions

part_sln.tex (shown in Fig. 4.6) is a file forming part of a collection of LATEX source files to be assembled to a
single LATEX source. Text between the user-defined LATEX commands \solstart and \solend forms part of a

...

\definecolor{hellgrau}{gray}{0.85}
\newcommand{\solstart}{\begin{center}\textbf{- - - - - - - - - - - -

\fcolorbox{black}{hellgrau}{Start Solution}- - - - - - - - - - - -}\end{center}}

\newcommand{\solend}{\begin{center}\textbf{- - - - - - - - - - - -

\fcolorbox{black}{hellgrau}{End Solution}- - - - - - - - - - - -}\end{center}}

...

\begin{itemize}

\item

First question.

\item

Second question.

\end{itemize}

\solstart

\begin{itemize}

\item

Answer to first question.

\item

Answer to second question.

\end{itemize}

\solend

Further questions.

...

Figure 4.6: The File part sln.tex

model solution of exam questions, not to be shown to students in the final version. Fig. 4.7 shows the structure
of the printed version of the exam script with solutions.

The task is to use the shell script sieve for producing the file part.tex from part_sln.tex; the latter is

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

144

Text Processing

...

• First question.

• Second question.

- - - - - - - - - - - - Start Solution - - - - - - - - - - - -

• Answer to first question.

• Answer to second question.

- - - - - - - - - - - - End Solution - - - - - - - - - - - -

Further questions.

...

Figure 4.7: Structure of the Printed Exam Script with Solutions

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://bookboon.com/
http://bookboon.com/count/advert/bb104666-5119-403f-91c4-a3e7010cbfdf

Download free eBooks at bookboon.com

Applications of Prolog

145

Text Processing

shown in Fig. 4.8. In part.tex, all lines between \solstart and \solend have been removed, including the
marker lines themselves.

...

\definecolor{hellgrau}{gray}{0.85}
\newcommand{\solstart}{\begin{center}\textbf{- - - - - - - - - - - -

\fcolorbox{black}{hellgrau}{Start Solution}- - - - - - - - - - - -}\end{center}}

\newcommand{\solend}{\begin{center}\textbf{- - - - - - - - - - - -

\fcolorbox{black}{hellgrau}{End Solution}- - - - - - - - - - - -}\end{center}}

...

\begin{itemize}

\item

First question.

\item

Second question.

\end{itemize}

Further questions.

...

Figure 4.8: The File part.tex

It is seen in Fig. 4.8 in particular that the text between the marker phrases (\solstart and \solend) is
removed only if they are the first phrase of their respective lines. (This is why the command definitions in
Fig. 4.8 are still there.)�

!

"
bash-3.1$./sieve part\ sln\.tex part\.tex \\solstart \\solend

% /home/acsenki/scripts/sieve.pl compiled 0.01 sec, 4,284 bytes

Input file : ’part sln.tex’

Output file: ’part.tex’

Text removal between the phrases ’\solstart’ and ’\solend’

Figure 4.9: Running the Shell Script sieve

The task was achieved by running the shell script as shown in Fig. 4.9. Fig. 4.9 illustrates how string
arguments containing the backslash character or the dot are used when running the shell script.

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

146

Text Processing

4.2 Text Generation and Drawing with LATEX

4.2.1 Cycloids

Cycloids are a class of plain curves, well known from the Calculus of Variations (see e.g. the early classic [13,
p. 26] or [26, Ch. 22, p. 844]). A cycloid is described by a point P attached to a disc rolling on a straight line
(the base line) (Fig. 4.10). The following notation will be used.

• r is the radius of the disc,

• a is the distance of P = (x, y) from the disc’s centre C,

• φ is the angle of rotation of the disc, measured in radians, clockwise positive.

The disc rests initially on the co-ordinate origin, therefore, C = (0, r) and P = (0, r − a) for φ = 0; this is the
disc on the left in Fig. 4.10. If P is outside the disc (a > r) the curve generated is a prolate cycloid (Fig. 4.11);
if it is inside (a < r) a curtate cycloid is obtained (Fig. 4.12); and, if it is on the perimeter of the disc (a = r) a
common cycloid (Fig. 4.13) is obtained. (For cycloids and other plane curves a good reference is [11, p. 165].)
The co-ordinates of a point on the cycloid are given by

�

�

×
•C

P

� ×• C′

P ′

�

�
r

�

�
a

Figure 4.10: Drawing a Cycloid (φ = π/2)

x = rφ − a sinφ, (4.1)

y = r − a cosφ. (4.2)

The disc on the right in Fig. 4.10 is obtained by rotating the initial disc clockwise by φ = π/2. According to
(4.1)-(4.2), P ’s new position is P ′ = (rφ − a sin φ, r − a cosφ) = (rπ/2 − a, r), whereas C obviously moves to
C′ = (rφ, r) = (rπ/2, r).

�

�

Figure 4.11: Prolate Cycloid Drawn with \writecurve from Fig. 4.14 (r = 5, a = 8, 3.5 revs)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

147

Text Processing

�

�

Figure 4.12: Curtate Cycloid Drawn with \writecurve similar to Fig. 4.14 (r = 5, a = 3, 3.5 revs)

�

�

Figure 4.13: Common Cycloid Drawn with \writecurve similar to Fig. 4.14 (r = 5, a = 5, 3.5 revs)

4.2.2 Task

Define a Prolog predicate which will generate a LATEX command for drawing a cycloid of a given description.

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

Download free eBooks at bookboon.com

Applications of Prolog

148

Text Processing

The only tool available is the LATEX package epic (e.g. [14]).

The package epic provides the command \drawline for connecting a sequence of points by a straight line
segment . The syntax of this command is

\drawline[stretch](x1, y1)(x2, y2)...(xn, yn)

where stretch is an optional parameter (not used here) and (x1, y1)(x2, y2)...(xn, yn) is the sequence of co-
ordinates of the points to be connected. The task is to define a Prolog predicate define command/4 for
displaying on the terminal text which is essentially the LATEX command sought. This is illustrated in Fig. 4.14.
The text so obtained is then pasted (after possibly some minor modifications) into the desired location in the#

$

%

&
?- define command(5, 8, 3.5, 100).
\newcommand{\writecurve}{\drawline(0,-3)(-0.645588,-2.80733)
(-1.20712,-2.23862)(-1.60458,-1.32124)(-1.76588,-0.099392)(-1.63027,1.36808)

...
(101.754,11.3212)(104.35,12.2386)(107.111,12.8073)(109.956,13.0)}
Yes

Figure 4.14: Generating the LATEX Command \writecurve with define command/4

LATEX source file. The curve thus drawn will comprise a sequence of straight line segments, an approximation to
the specified cycloid, looking like as a smooth curve if the subdivision of the parameter interval is fine enough.
Fig. 4.11, for example, was drawn by applying the LATEX code (L-4.1). (The LATEX command \writecurve, as
generated by Prolog in Fig. 4.14, is used in line 9 of (L-4.1).)

LATEX Code L-4.1: Drawing Fig. 4.11

1 \begin{figure}[h]

2 \begin{center}

3 \setlength{\unitlength}{1mm}

4 \begin{picture}(118,16)(0,0)

5 \thicklines

6 \put(5,-5){\vector(0,1){21}}

7 \put(0,0){\vector(1,0){115}}

8 \thinlines

9 \put(5,5){\makebox(0,0){\writecurve}}

10 \end{picture}

11 \end{center}

12 \caption{Prolate Cycloid Drawn with \texttt{\writecurve} from

13 Fig.~\ref{textprocessing:cycloids:generatecommand}

14 ($r=5$, $a=8$, 3.5 revs)}

15 \label{textprocessing:cycloids:fig:prolate}

16 \end{figure}

4.2.3 Solution

The Prolog predicates for generating the LATEX command \writecurve are shown in (P-4.4).

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

149

Text Processing

Prolog Code P-4.4: Prolog Code Generating \writecurve

1 cyc(R, A, Alpha, Pair) :- Pi is 3.1415926,

2 Rad is Alpha * Pi / 180,

3 S is sin(Rad),

4 C is cos(Rad),

5 X is R * Rad - A * S,

6 Y is R - A * C,

7 concat atom([’(’,X,’,’,Y,’)’], Pair).

8 mesh(Revs, NInt, List) :- mesh(Revs, NInt, NInt, List, []), !.

9 mesh(, , 0, [0|Acc], Acc).

10 mesh(Revs, NInt, NumInt, List, Acc) :-

11 H is NumInt * (Revs * 360 / NInt),

12 NewNumInt is NumInt - 1,

13 mesh(Revs, NInt, NewNumInt, List, [H|Acc]).

14 pairs(R, A, Revs, NInt, Pairs) :- mesh(Revs, NInt, Mesh),

15 maplist(cyc(R,A), Mesh, Pairs).

16 define command(R, A, Revs, NInt) :-

17 pairs(R, A, Revs, NInt, Pairs),

18 concat atom([’\\newcommand{\\writecurve}{\\drawline’|Pairs], Atom),

19 concat atom([Atom,’}’], C),

20 write(C).

Comments on, and Exemplification of (P-4.4).

1© Let r = 10, a = 4 and C = (0, 10). A counterclockwise rotation by α = 90◦ (& associated roll of the disc
to the right) moves the point P = (0, 6) to P ′ = (11.708, 10.0).

?- cyc(10, 4, 0, Pair).

Pair = ’(0,6)’

Yes

- cyc(10, 4, 90, Pair).

Pair = ’(11.708,10.0)’

Yes

cyc/3 is essentially an implementation of (4.1)-(4.2) with the proviso that rotations are measured in
degrees. The output of cyc/3 is an atom.

2© Let us asume that we want to plot the path of P between the two positions from 1©, involving a quarter
turn clockwise. A crude approximation will take snapshots corresponding to the positions 0◦, 15◦, 30◦,
45◦, 60◦, 75◦ and 90◦. The number of intervals involved is therefore 6 (each of length 15◦). The 7
gridpoints are generated as a list by mesh/3 thus

?- mesh(0.25, 6, List).

List = [0, 15, 30, 45, 60, 75, 90]

Yes

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

150

Text Processing

3© A sequence of points on the path of P is generated by pairs/5 . For example, the 7 pairs of co-ordinates
of P in 2© are obtained by

?- pairs(10, 4, 0.25, 6, Pairs).

Pairs = [’(0,6)’, ’(1.58272,6.1363)’, ’(3.23599,6.5359)’, ’(5.02555,7.17157)’,

’(7.00787,8.0)’, ’(9.22627,8.96472)’, ’(11.708,10.0)’]

Yes

pairs/5 uses mesh/3 as an auxiliary. Furthermore, cyc/5 is used in partial application in the second
goal in the definition of pairs/5 in the first argument of maplist/3 . The output of pairs/5 is a list of
atoms. They represent the co-ordinates of the points which will form the vertices of the approximating
polygon. \drawline from epic will be used to connect them.

4© define command/4 essentially concatenates the list entries from 2© thus

?- define_command(10, 4, 0.25, 6).

\newcommand{\writecurve}{\drawline(0,6)(1.58272,6.1363)(3.23599,6.5359)(5.02555,7.17157)

(7.00787,8.0)(9.22627,8.96472)(11.708,10.0)}

Yes

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

Applications of Prolog

151

Text Processing

5© Numbers whose modulus is very small or very large are displayed by default in Prolog in the scientific
number format (the ‘exponential notation’). If applicable, change such numbers to be displayed in the
floating point format using the ‘non-exponential notation’. For example, 1/888888 will be displayed as
1.125e− 06. Change this to 0.000001125 in the LATEX file.4 (Notice that this point does not apply to the
output generated in 4©.)

6© Now the LATEX command \writecurve is ready to be used inside a figure and it will draw the desired
cycloid. Fig. 4.15 was drawn with the \writecurve LATEX command from 4©; the code for Fig. 4.15 is
not shown here as it is very similar to that shown in (L-4.1).

�

�

Figure 4.15: ‘Quarter’ Cycloid Drawn with \writecurve (r = 10, a = 4, 1/4 revs)

4.3 Exercises

Exercise 4.1. The predicate sieve/4 was defined in Sect. 4.1 for removing text situated between some spec-
ified pairs of markers. Define now a predicate retain/4 for retaining text between some specified pairs of
markers. (Such a predicate could be used, for example, for extracting all figures from a LATEX document.) Use
your Prolog implementation in a shell script for solving the same task. �

Exercise 4.2. The two circles shown in Fig. 4.10 were drawn with the user-defined LATEX command
\defcirc. The definition of \defcirc was generated interactively by running the predicate circ command/4

as shown in Fig. 4.16. (L-4.2) shows a partial view of the LATEX picture environment defining Fig. 4.10: lines#

$

%

&
?- circ command(10, 0, 0, 100).
\newcommand{\defcirc}{\drawline(10,0)(9.98027,0.627905)
(9.92115,1.25333)(9.82287,1.87381)(9.68583,2.4869)(9.51057,3.09017)
...

(9.82287,-1.87381)(9.92115,-1.25333)(9.98027,-0.627906)(10.0,-1.0718e-06)}
Yes

Figure 4.16: Generating the LATEX Command \defcirc with circ command/4

9 and 11 illustrate the use of \defcirc.

4The alternative is using sformat/3 (formatted write) in (P-4.4) for displaying numbers in non-exponential notation; see Exer-
cise 4.3.

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

152

Text Processing

LATEX Code L-4.2: Partial view of the LATEX code for Fig. 4.10

1 \begin{figure}[h]

2 \begin{center}

3 \setlength{\unitlength}{1mm}

4 \begin{picture}(118,25)(0,0)

5 \thicklines

6 \put(25,-5){\vector(0,1){30}}

7 \put(0,-2){\vector(1,0){115}}

8 \thinlines

9 \put(25,8){\makebox(0,0){\defcirc}}
10 ...

11 \put(40.707963,8){\makebox(0,0){\defcirc}}
12 ...

13 \end{picture}

14 \end{center}

15 \caption{Drawing a Cycloid}\label{textprocessing:fig:definingcycloid}

16 \end{figure}

Define the Prolog predicate circ command(+Radius, +CentreX, +CentreY, +NInt) 5 for displaying on the
terminal LATEX code defining \defcirc.

As before, assume that only basic LATEX and the epic package are available.6 �

Exercise 4.3. You will have defined in Exercise 4.2 a Prolog predicate circ command/4 the output of
which may have to be put through the manual processing step described in 5© of Sect. 4.2.3. This exercise is
about writing an improved implementation of circ command/4 , called imp circ command/4 , that will obviate
this since its output will contain pairs of numbers in non-exponential notation only.

The ‘old’ version of the predicate may be used to define a command for a circle of radius 10 with centre
(0, 10) by approximating the circle with a regular 20 sided polygon (Fig. 4.17). Both entries of the sixteenth�

�

�

�

?- circ command(10, 0, 10, 20).
\newcommand{\defcirc}{\drawline(10,10)(9.51057,13.0902)
(8.09017,15.8779)(5.87785,18.0902)(3.09017,19.5106)(2.67949e-07,20.0)
(-3.09017,19.5106)(-5.87785,18.0902)(-8.09017,15.8779)(-9.51057,13.0902)
(-10.0,10.0)(-9.51057,6.90983)(-8.09017,4.12215)(-5.87785,1.90983)

(-3.09017,0.489435)(-8.03847e-07,3.19744e-14)(3.09017,0.489435)(5.87785,1.90983)
(8.09017,4.12215)(9.51056,6.90983)(10.0,10.0)}
Yes

Figure 4.17: Generating the LATEX Command \defcirc with circ command/4

pair in Fig. 4.17 are in the exponential notation, something LATEX won’t accept. The modified version produces
essentially the same output with all the numbers in the floating point notation (Fig. 4.18).

You should define imp circ command/4 by using the SWI-Prolog built-in predicate sformat/3 .

Hint.

The predicate sformat/3 is there for producing formatted output returned as a string. Use the ‘f’ format (for
floating point, non-exponential) in the second argument of sformat/3 . For further information, see [6, p. 493]

5NInt denotes the number of intervals used when discretising a full revolution.
6In basic LATEX \circle is used to draw circles. It allows, however, to draw circles up to a certain size only.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

153

Text Processing

�

�

�

�

?- imp circ command(10, 0, 10, 20).
\newcommand{\defcirc}{\drawline(10.0000000,10.0000000)
(9.5105652,13.0901699)(8.0901700,15.8778524)(5.8778527,18.0901698)
(3.0901701,19.5105651)(0.0000003,20.0000000)(-3.0901696,19.5105653)
(-5.8778522,18.0901702)(-8.0901697,15.8778529)(-9.5105650,13.0901704)

(-10.0000000,10.0000005)(-9.5105653,6.9098306)(-8.0901703,4.1221480)
(-5.8778531,1.9098305)(-3.0901707,0.4894351)(-0.0000008,0.0000000)

(3.0901691,0.4894346)(5.8778518,1.9098295)(8.0901694,4.1221467)
(9.5105648,6.9098291)(10.0000000,9.9999989)}
Yes

Figure 4.18: Generating the LATEX Command \defcirc with imp circ command/4

and [33]. �

Exercise 4.4. We are now in a position to address the generation of LATEX code for any parametric
two-dimensional curve. The aim is to define a predicate

gen command2(+CName, +Fun, +Lower, +Upper, +NInt, +Pars) (4.3)

The arguments and the intended working of gen command2/6 are best explained with reference to an example.

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

Applications of Prolog

154

Text Processing

The curve we are going to use is the improved circle imp circ/5 from (P-A.11), p. 193 (solution of Exercise 4.3).

The LATEX command for drawing a polygonial approximation with four sides to the lower half of a circular
arc with radius 10, centre (0, 10) should be generated thus

?- gen command2(’\\halfcirc’, imp circ, 180, 360, 4, [10,0,10]).

\newcommand{\halfcirc}{\drawline(-10.0000000,10.0000005)(-7.0710683,2.9289327)(-0.0000008,0.0000000)

(7.0710671,2.9289315)(10.0000000,9.9999989)}

Once this command definition is in the LATEX code, \halfcirc is ready to be used in a figure. (The output may
then look like the polygon in Fig. 4.19.) The arguments in (4.3) are easily matched to their respective values

�

�

������
��
�

Figure 4.19: Polygon Drawn with \halfcirc

in the query. On the other hand, imp circ(+R, +X, +Y, +Alpha, -Pair) , the predicate from (P-A.11), has

1. Three fixed (input) parameters: radius R , and the two co-ordinates of the centre X and Y ;

2. One argument: angle of rotation Alpha , measured counterclocwise positive from the circle’s rightmost
point;

3. One output: Pair , returned as a string.

The following is taking place in the query above.

• The command name CName in (4.3) is unified with the string ‘\halfcirc ’;

• The predicate name Fun is unified with ‘imp circ ’;

• The domain of the argument Alpha is the interval [Lower, Upper] = [180, 360]. It is subdivided into
NInt (= 4) intervals of equal length. The function values (pairs) are calculated internally for all interval
endpoints, i.e. the 5 values of Alpha , [180, 225, 270, 315, 360];

• The argument Pars (list of parameters) is unified with [10, 0, 10], amounting to the unifications R = 10,
X = 0, Y = 10;

• And, finally, after some processing, the command definition is written to the terminal.

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

155

Text Processing

Built-in Predicate: apply(+Pred,+List)

Uses the entries of List as arguments to the predicate Pred . Partial applica-
tion of Pred is possible. The examples below refer to a polynomial defined by
the predicate pol/5 ,

pol(A, B, C, X, Y) :- Y is A + B * X + C * Xˆ2.

?- pol(4, 3, 2, 10, Y).

Y = 234

Yes

?- apply(pol, [4, 3, 2, 10, Y]).

Y = 234

Yes

?- apply(pol(4, 3), [2, 10, Y]).

Y = 234

Yes

apply/2 is a higher order predicate. Use apply(+Pred, +List) to invoke Pred

whose arity is not known at compile time.

Detailed Plan.

The main point is to recognize the need to be able to pass on a predicate name as an argument. The built-in
predicate apply/2 is used to accomplish that. The implementation described here has a ‘functional flavour’.

1. Write a predicate gen mesh(+Lower, +Upper, +NInt, -Mesh) for generating a list of meshpoints.

?- gen mesh(180, 360, 4, Mesh).

Mesh = [180, 225, 270, 315, 360]

Yes

2. Define a predicate applic(+Fun, +Pars, +Argument, -Outcome) for calculating values of a function,
defined by a predicate. For example, instead of having

?- imp_circ(10, 0, 10, 225, Outcome).

Outcome = ’(-7.0710683,2.9289327)’

Yes

we may now equivalently do

?- applic(imp circ, [10, 0, 10], 225, Outcome).

Outcome = ’(-7.0710683,2.9289327)’

Yes

The two queries may deliver the same but the second one will be preferable in our context as it allows the
predicate name to be passed on as an argument; applic/4 is therefore a higher order predicate. Notice
that the order of the arguments supplied to Fun is replicated by the entries of the list Pars and the
arguments Argument and Outcome .

Hint. Use the built-in predicate apply/2 . (See inset.)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

156

Text Processing

3. Define a predicate gen vals(+Fun, +Lower, +Upper, +NInt, +Pars, -Vals) for calculating the list of
values taken by a given function at equidistant gridpoints. Example:

?- gen vals(imp circ, 180, 360, 4, [10,0,10], Vals).

Vals = [’(-10.0000000,10.0000005)’, ’(-7.0710683,2.9289327)’, ’(-0.0000008,0.0000000)’,

’(7.0710671,2.9289315)’, ’(10.0000000,9.9999989)’]

Yes

Use here gen mesh/4 and applic/4 from above. Furthermore, use also the built-in predicate maplist/3 .

4. Finally define gen command2(+CName, +Fun, +Lower, +Upper, +NInt, +Pars) ; it should behave as ex-
emplified on p. 154.

�

Exercise 4.5. The logarithmic spiral in Fig. 4.20 was drawn with the LATEX command \spiral the definition
of which was generated with Prolog by using gen command2/6 from Exercise 4.4.

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

Download free eBooks at bookboon.com

Applications of Prolog

157

Text Processing

?- gen command2(’\\spiral’, log spiral, 0, 2160, 300, [85, 0, 0]).

\newcommand{\spiral}{\drawline(1.0000000,0.0000000)(1.0030823,0.1267188)(0.9901165,0.2542187)

...

(25.6446869,-6.5844539)(26.5581065,-3.3550864)(27.0651201,-0.0000174)}

Yes

�

�

Figure 4.20: Logarithmic Spiral Drawn with \spiral

Define the predicate log spiral(+Alpha, +CentreX, +CentreY, +RotAngle, -Pair) and then redraw in
LATEX the spiral on Fig. 4.20.

Hint. As is well known (e.g. [2]), a point on the logarithmic spiral with Cartesian co-ordinates (r cosφ, r sin φ)
is defined by r = ekφ with k = cotα, where (r, φ) are the point’s polar co-ordinates and α is the constant (acute)
angle at which the spiral cuts all rays emitted from the origin. (φ and α are both measured in radians in these
formulae.) In the above query, we have made 2160◦/360◦ = 6 revolutions, subdivided the interval [0◦, 2160◦] into
300 intervals of equal length, and, the angle α measured 85◦. (Obviously, the arguments Alpha and RotAngle

in log spiral/5 are both measured in degrees .) The pole was taken to be the origin (0, 0).
Note. An entire section is devoted to spirals in the beautiful book [25]. Questions concerning their self-

similarity occupy the authors’ attention. �

Exercise 4.6. You are asked to defined the predicate curves/2 in this exercise. It will simplify and
automate the command definitions considered in Exercise 4.4.

Assume that we want to draw possibly several parametric curves in LATEX each of which we can in isolation
specify, generate and draw as described in Exercise 4.4. The pasting-in from the terminal of the LATEX codes
generated is cumbersome and error prone as it is a manual step. Therefore, we want to be able to create a
file where all the LATEX code will be deposited, ready to be included into our LATEX document via \include.
Furthermore, the curves’ interactive specifications (via the keyboard) is also best avoided for the same reason;
the preferred way of doing this is via some input file.

Illustrative Example.

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

158

Text Processing

�

�

Figure 4.21: Growing Spirals

We want to generate Fig. 4.21 containing four spirals. The LATEX command for each of the four spirals can
be generated by gen command2/6 from Exercise 4.4. (It is assumed of course that the predicate log spiral/5

from Exercise 4.5 is available.) Once curves/2 is available, we can solve this task in the following three steps.

1© Create a file stating the four curves’ specifications in terms of gen command2/6 ; this has been done here
in spirals shown in Fig. 4.22. The lines in spirals whose first character is % serve as comment lines.

%%

% %

% Spirals specified via gen command2/6 ... %

% %

%%

%

% gen command2(’\\tinyspiral’, log spiral, 0, 360, 36, [85, 0, 0]). ...

%

gen command2(’\\tinyspiral’, log spiral, 0, 360, 36, [85, 0, 0])

%

% gen command2(’\\smallspiral’, log spiral, 0, 720, 72, [85, 0, 0]). ...

%

gen command2(’\\smallspiral’, log spiral, 0, 720, 72, [85, 0, 0])

%

% gen command2(’\\normalspiral’, log spiral, 0, 1080, 108, [85, 0, 0]). ...

%

gen command2(’\\normalspiral’, log spiral, 0, 1080, 108, [85, 0, 0])

%

% gen command2(’\\largespiral’, log spiral, 0, 1440, 144, [85, 0, 0]). ...

%

gen command2(’\\largespiral’, log spiral, 0, 1440, 144, [85, 0, 0])

%

Figure 4.22: The File spirals

2© Perform now the following Prolog dialogue.

?- consult(draw).

% draw compiled 0.00 sec, 11,432 bytes

Yes

?- curves(’spirals’, ’spirals.tex’).

Yes

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

159

Text Processing

3© The file spirals.tex will have been created in step 2©. This is shown in Fig. 4.23. Notice that

%%

% %

% Spirals specified via gen command2/6 ... %

% %

%%

%

% gen command2(’\\tinyspiral’, log spiral, 0, 360, 36, [85, 0, 0]). ...

%

\newcommand{\tinyspiral}{\drawline(1.0000000,0.0000000)(0.9999608,0.1763201)

...

(1.6805635,-0.2963289)(1.7327464,-0.0000002)}

%

...

...

%

% gen command2(’\\largespiral’, log spiral, 0, 1440, 144, [85, 0, 0]). ...

%

\newcommand{\largespiral}{\drawline(1.0000000,0.0000000)(0.9999608,0.1763201)

...

(8.7429878,-1.5416285)(9.0144653,-0.0000039)}

%

Figure 4.23: The File spirals.tex

spirals.tex is a valid LATEX file best included into the LATEX source by means of \include{spirals}.
Lines starting in spirals with % are copied unchanged by curves/2 into spirals.tex, becoming thereby
LATEX comment lines. curves/2 uses gen command/6 to generate the commands specifying the curves,
here the four spirals.

Define the predicate curves/2 !

Hint. Use apply/2 to call a predicate whose name is known at runtime only. For example, in the query
below, after defining the predicate pol/5 the variable Pred is unified with pol(4, 3, 2, 10, Y) and then
the goal pol(4, 3, 2, 10, Y) is satisfied via the call apply(Pred, []) .

?- consult(user).

|: pol(A, B, C, X, Y) :- Y is A + B * X + C * X * X.

|:
�� ��Ctrl +
�� ��D

% user://1 compiled 0.01 sec, 392 bytes

Yes

?- Pred = pol(4, 3, 2, 10, Y), apply(Pred, []).

Pred = pol(4, 3, 2, 10, 234)

Y = 234

Yes

�

Exercise 4.7. Embed the predicate curves/2 from Exercise 4.6 into a Linux shell script called ‘curves’
for creating a LATEX file for defining parametric curves. The shell script will use two arguments corresponding to
those of curves/2 . (This solution will have the benefit of the underlying Prolog application remaining hidden

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

160

Text Processing

from the user.)

Illustrative Example.

Running the script curves as shown in Fig. 4.24 will have the same effect as applying the predicate curves/2
in step 2© of Exercise 4.6. The file spirals.tex created thereby was copied by means of the last line of Fig. 4.24�

�

�

�

csenki@linux:∼/scripts> ./curves spirals spirals\.tex

% /home/csenki/scripts/draw.pl compiled 0.00 sec, 11,800 bytes

Input file : ’spirals’

Output file: ’spirals.tex’

LaTeX source ’spirals.tex’ created

csenki@linux:∼/scripts> cp spirals.tex ∼/texmatter/ventus

Figure 4.24: Running the Shell Script curves

into a directory where all LATEX source for the present document is kept. (This copy was made subsequently
part of the LATEX source by writing ‘\include{spirals}’ in the source’s top level file.) �

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

